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Molecular nuclear fields: A naı̈ve perspective
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Department of Inorganic and Physical Chemistry, Ghent University, Krijgslaan 281, B-9000 Gent,
Belgium and Institut de Quı́mica Computacional, Universitat de Girona, Girona 17071 Catalonia,

Spain
E-mail: quantumqsar@hotmail.com

Received 26 May 2005; revised 6 June 2005

A Gaussian function superposition is described in order to substitute the usual point
charge approximation in molecular fixed frames. This procedure avoids the discontinu-
ities at the nuclear positions which haunt first order density and EMP. Total first order
density, made of the electronic and the Gaussian nuclear charge distributions, can be
used to compute and compare molecular fields within quantum similarity techniques.
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1. Introduction

It has been already commented that the introduction of the nuclear field
part, using the classical nuclear point charge framework in both density and
EMP, now in other kind of molecular fields as these described so far here, pro-
vides with both type of functions, which are not suitable for general purposes
as they offer discontinuities at the nuclei positions. Several years ago the author
proposed a solution for this problem in EMP comparisons for quantum similar-
ity purposes [1].

2. Taking into account the nuclear charges in one electron density

Here a simple possibility is proposed, consisting into associating at each
nucleus not a point-like superposition of Dirac distributions but a Gaussian one,
for instance writing the nuclear charge density of a given molecule with a fixed
nuclear coordinate set RF = {

RF ;I
}
, as:

ρν
F (r | RF ) =

∑

I∈F

ZI

[
N(ZI ) exp

(
−θ(ZI )

∣∣ r − RF ;I
∣∣2

)]
,
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where the explicit Gaussian functions for each nucleus are normalized in the
Minkowski sense:

N(ZI )

∫

D

exp
(
−θ(ZI )

∣∣ r − RF ;I
∣∣2

)
dr = 1

and θ(ZI ) is a function of the nuclear charge.
In this sense, one will have the Minkowski norm of the nuclear density

function equal to the total charge of the molecular nuclei:
∫

D

ρν
F (r | RF )dr =

∑

I∈F

ZI

[
N(ZI )

∫

D

exp
(
−θ(ZI )

∣∣r − RF ;I
∣∣2

)
dr

]
=

∑

I

ZI

The value of the Minkowski norm for each Gaussian contribution could easily
found to be:

N(ZI ) =
(

θ(ZI )

π

) 3
2

.

A possible choice, which can be obviously refined, for such a function, θ(ZI ),
could be:

θ(ZI ) = αZ−1
I ,

using the constant α as a damping parameter with dimensions of inverse squared
length. This choice will be the same as to consider the nuclei density more
extended around the atomic center, as greater is the nuclear charge. Such a sup-
position can be assumed without problems, if the damping constant keeps the
mean radius of the attached nuclear charge sufficiently small.

The mean square radius can be computed easily too, just writing:

〈
r2〉 = N(ZI )

∫

D

∣∣r − RF ;I
∣∣2

exp
(
−θ(ZI )

∣∣r − RF ;I
∣∣2

)
dr = 1

2θ(ZI )
;

then, using the above specific definition of the function θ(ZI ):

〈
r2〉 = ZI

2α
→ α = ZI

2
〈
r2

〉 ,

which taking into account the estimate of the mean square atomic radius as:〈
r2

〉 ≈ 10−30au2, provides an estimate of the damping factor of: α ≈ ZI

2 1030au−2.
Moreover, whatever the function θ(ZI ) for each nucleus becomes infinite,

then the Gaussian nuclear charge distribution transforms into a Dirac’s distribu-
tion. This can be written easily as:

lim
∀ZI →∞

ρν
F (r | RF ) =

∑

I∈F

ZI δ
(
r − RF ;I

)
.
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Thus, calling:

ρν
F,I

(
r

∣∣ RF ;I ; ZI

) = N(ZI ) exp
(
−θ(ZI )

∣∣r − RF ;I
∣∣2

)
, (1)

then:

ρν
F (r | RF ) =

∑

I∈F

ZIρ
ν
F,I

(
r

∣∣ RF ;I ; ZI

)

are the nuclear densities of a given molecular structure, therefore the total
density can be written as:

ρT
F (r | RF ) = −ρε

F (r | RF ) + ρν
F (r | RF ) ,

in such a way that the Minkowski norm of the total density becomes null in neu-
tral molecules:

〈
ρT

F (r | RF )
〉 = 0.

Such an arrangement can permit to use the total density within an integral with-
out discontinuity problems.

3. Analysis of the nuclear density function

To the modified nuclear density function ρν
F (r | RF ) one can apply the same

analysis as Bader performed in the usual electronic density function [2]. Thus,
the gradient can be written easily, if it is explicitly known the gradient and
Hessian of a Gaussian function, like the one described in the equation (1). In
the present case, this is trivial, as one can write both first and second derivatives
without effort. A similar analysis has been performed on the ASA density func-
tions recently [3] and as both approaches are formally the same, this subject will
not be further commented.

4. Effect of the Gaussian nuclear charge distribution in the EMP

It has been discussed how the GNCD can be added to the density function
without divergence problems when the total density is integrated in the Minkow-
ski sense. How this will affect the definition of other molecular fields as EMP?
The answer to this question will be discussed here.
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The nuclear contribution using the Gaussian distribution so far described
will have the form:

VN;F (R) =
∫

D

|r − R|−1 ρν
F (r | RF )dr

=
∑

I∈F

ZI

[
N(ZI )

∫

D

|r − R|−1 exp
(
−θ(ZI )

∣∣r − RF ;I
∣∣2

)
dr

]

=
∑

I

ZIVN;F,I

(
ZI ; RF ;I | R

)

where the necessary integrals are well-known functions of the incomplete gamma
function [4]:

VN;F,I

(
ZI ; RF ;I | R

) = 2
(

θ(ZI )

π

) 1
2

F0

(
θ(ZI )

∣∣R − RF ;I
∣∣2

)
.

5. Effect of a nuclear Gaussian charge distribution in quantum similarity
comparisons of molecular fields

When two or more molecular fields are to be compared in the way density
functions have been compared within quantum similarity measures, integrals of
several kinds shall be taken into account. This section will be devoted to describe
formally their structure.

5.1. Density quantum similarity comparison

Suppose two densities attached to two molecular structures F and M, which
are composed by an electronic and a nuclear part each one, for example:

ρF (RF | R ) = −ρε
F (RF | R ) + ρν

F (RF | R ) ,

where RF represent the atomic coordinates of molecule F, while the same applies
for molecule M.

Thus, four different kinds of contributions have to be taken into account
when one tries to compare both densities by means of quantum similarity inte-
gral [5] weighted by some operator �:

Zκλ
FM (� | RF ; RM )

=
∫

�′

∫

�

ρκ
F (R | RF )�

(
R, R′) ρλ

M

(
R′ | RM

)
dRdR′ (2)

where the subindices κ, λ can be associated to the electronic and nuclear contri-
butions of the density, thus:

ZFM (� | RF ; RM ) = Zεε
FM + Zνν

FM − (
Zεν

FM + Zνε
FM

)
(3)
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and on the right side of the equation the explicit operator and system coordi-
nates have been avoided for easier description.

In this case, the operator � can be taken with arbitrary sign definition
as the quantum similarity integrals ZFM (� | RF ; RM ) are not necessarily posi-
tive definite due to the presence of the negative crossed terms in the integral of
definition (3).

5.2. EMP quantum similarity comparison

The same contributions can be foreseen to appear when EMP or any other
molecular field is taken into account. The case of EMP is important as it has
been used in several quantum similarity studies in a manner where the disconti-
nuities of the classical EMP form were not avoided [6]. The equivalent quantum
similarity integral to the present definition (2), involving EMP, is slightly differ-
ent:

Zκλ
FM =

∫

�′

∫

�

V κ
F (R)�

(
R, R′) V λ

M

(
R′) dRdR′

=
∫

�′

∫

�

(∫

D

ρκ
F (r) |r − R|−1 dr

)
�

(
R, R′)

(∫

D′
ρλ

M

(
r′) ∣∣r′ − R′∣∣−1

dr′
)

dRdR′

The expression can be simplified choosing the operator as a Dirac delta function:

�
(
R, R′) = δ

(
R − R′) ,

then one can write:

Zκλ
FM =

∫

�

(∫

D

ρκ
F (r) |r − R|−1 dr

) (∫

D′
ρλ

M

(
r′) ∣∣r′ − R

∣∣−1
dr′

)
dR

=
∫

�

∫

D′

∫

D

ρκ
F (r) |r − R|−1

∣∣r′ − R
∣∣−1

ρλ
M

(
r′)drdr′dR

A simplification of the four contributing integrals can be envisaged using
the alternative integration:

Zκλ
FM ≈

∫

D

∫

D′
ρκ

F (r)
∣∣r − r′∣∣−2

ρλ
M

(
r′) dr′dr,

which has been described in a previous work [7].
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6. Conclusions

A simple procedure to avoid discontinuities in the molecular field descrip-
tors has been described. The form of the nuclear charge is constructed as a
superposition of Gaussian functions normalized as to integrate to the sum of
nuclear charges in a given molecule. A limit of the approximation provides the
usual point-charge atomic model, as Gaussian functions become Dirac delta
functions when the Gaussian exponent becomes infinite. The Gaussian nuclear
charge distribution can be, thus, employed in describing total, that is: electronic
plus nuclear contributions, molecular fields as first order density and EMP, with-
out suffering of the problem of discontinuities when, for instance, they should be
integrated. They can be employed as well in quantum similarity comparisons of
molecular fields without more problems than the evaluation of the correspond-
ing integrals involving Hermitian operators and products of Gaussian functions.
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